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CANDECOMP /PARAFAC (CP) Tensor Factorization

Data = Systematic Variation + non-Systematic Variation
Systematic Variation: multilinear

Rank R approximation of X € R/*/xK,

X=M+E&E

R

M:Zu,ov,ow, -
r=1
R

Mijjk = g Ujr Vjr Wir
r=1
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Fitting the CP model

Minimize sum of transformed elementwise residuals

Repeat fixing two factors and minimizing the other.

ply) =y ply) = ly|
MLE if ej i.i.d. Gaussian i.i.d. Laplacian
Algorithm CPALS CPAL1
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Violating Gaussian assumptions: Who cares?

o What kind of non-Gaussianity is problematic?
o Sparse large perturbations.

o Prior work: matrices
o Hawkins, Liu, and Young (2001)
o Ke and Kanade (2005)
o Zhou, Li, Wright, Candés, and Ma (2010)

o Prior work: tensor
o Vorobyov, Rong, Sidiropoulos, and Gershman (2005)

o Minimize 1-norm loss with block coordinate descent + linear
programming
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Majorization-Minimization

Strategy

Minimize a surrogate function that majorizes the objective.
Choose surrogate such that

o | surrogate = | objective.

o surrogate is easier to minimize than objective.

Definition

Given f and g, real-valued functions on RP, g majorizes f at x if

1 g(x) = f(x)
2. g(u) > f(u) for all w.
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Majorizing an approximation
Smooth ApprOX|mat|on
/ J K
ZZ e = migl 30D D7 o — mi)? + e

i=1 j=1 k=1 i=1 j=1 k=1

for some small € > 0 (~ le-10)
R
and mjj = Y1 Ui Vjr Wi

Block Coordinate Descent on approximate loss
I J K
(DB MIVTELAEE

i=1 j=1 k=1

o Problem separates in rows of U.

o Each row, u(; € RR, can be fit with Iterative Reweighted Least
Squares independently of all other rows.

Eric Chi and Tammy Kolda Robust Tensor Factorizations 6




MM Algorithm

g(-|x(©) — majorization of f at x(©)
repeat

x(K+1) — argmin, g(x|x(¥))

g(:|xk11) < majorization of £ at x(k+1)
until convergence

Loss = >-+/(xi — u)? + ¢

Iteration 1 Iteration 2 Iteration 3

Loss
Loss
Loss

u u u
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Toy example

X e R25><25><25_

Slice = mix of A and B.
A, Bc [R25%25

True rank R = 2.
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Toy example
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y example: Gaussian noise
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Gaussian Noise

X M €
CPALS l! :ljl -
CPAL1 l:] le -
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Gaussian + non-Gaussian noise
1 2 3 4 5
& ES B I'I
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Gaussian + non-Gaussian Noise

CPALS

CPAL1

Truth “
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Discussion

o Computational: 1-norm minimization is more work than least squares.

o Statistical: Robustness versus efficiency tradeoff

Take home lesson

o Least squares can be sensitive to non-Gaussian perturbations.

o MM algorithms

Practical

Existing results on convergence

Existing methods for speeding up convergence
Majorizing losses other than 1-norm

© ©0 ©0 ©
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Discussion

o Better robust loss functions?

o Data on different scales:

o Binary
o Non-negative data.

References for this work

o Extended abstract on arXiv
o Technical Report, in preparation

o Matlab code to be available online.
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echi@rice.edu
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